Notch signaling requires GATA-2 to inhibit myelopoiesis from embryonic stem cells and primary hemopoietic progenitors.
نویسندگان
چکیده
The bone marrow and thymus, although both hemopoietic environments, induce very distinct differentiation outcomes. The former supports hemopoietic stem cell self-renewal and multiple hemopoietic lineages, while the latter supports T lymphopoiesis almost exclusively. This distinction suggests that the thymic environment acts to restrict the hemopoietic fates available to thymic immigrants. In this study, we demonstrate that the addition of the Notch ligand Delta-like-1 (Dll-1) to an in vitro system that otherwise supports myelopoiesis, greatly reduces the myelopoietic potential of stem cells or uncommitted progenitors. In contrast, committed myeloid progenitors mature regardless of the presence of Dll-1. The block in myelopoiesis is the direct result of Notch signaling within the hemopoietic progenitor, and Dll-1-induced signals cause a rapid increase in the expression of the zinc finger transcription factor GATA-2. Importantly, in the absence of GATA-2, Dll-1-induced signals fail to inhibit commitment to the myeloid fate. Taken together, our results support a role for GATA-2 in allowing Dll-1 to restrict non-T cell lineage differentiation outcomes.
منابع مشابه
Adult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملNotch-dependent control of myelopoiesis is regulated by fucosylation.
Cell-cell contact-dependent mechanisms that modulate proliferation and/or differentiation in the context of hematopoiesis include mechanisms characteristic of the interactions between members of the Notch family of signal transduction molecules and their ligands. Whereas Notch family members and their ligands clearly modulate T lymphopoietic decisions, evidence for their participation in modula...
متن کاملLineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas.
Notch signaling regulates numerous developmental processes, often acting either to promote one cell fate over another or else to inhibit differentiation altogether. In the embryonic pancreas, Notch and its target gene Hes1 are thought to inhibit endocrine and exocrine specification. Although differentiated cells appear to downregulate Hes1, it is unknown whether Hes1 expression marks multipoten...
متن کاملErythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway.
Erythropoietin (Epo) stimulation of its receptor's downstream signaling pathways and optimum function of GATA-1 transcription factor are both essential for normal erythroid cell development. Epo-receptor (EpoR) signaling and GATA-1 regulate proliferation, survival, differentiation, and maturation of erythroid cells. Whether any signal that is generated by EpoR targets GATA-1 or affects GATA-1 t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 176 9 شماره
صفحات -
تاریخ انتشار 2006